新闻资讯 news

您现在的位置:首页 > 新闻资讯 > 锂电池百科 > 固态锂电池电解质有哪些系?

固态锂电池电解质有哪些系?

固态锂电池有概念到产品的产出,直到目前技术才慢慢成熟,但是离真正的大量商用还有一段距离。固态锂电池主要是相对于液态锂离子电池在电解质形态上的区别来说的,即电解液是固态的,那么固态锂电池电解质有哪些系呢?

固态锂电池

1、固态锂电池电解质的有机聚合物体系

常规液态锂离子电池使用的电解液和隔膜以有机成分为主,故同样隶属有机物的有机聚合物是固体电解质基体的自然选择。有机聚合物国体电解质体系包括聚氧化乙烯(PEO)及与其结构有一定相似性的聚合物(聚氧化丙烯、聚偏氯乙烯、聚偏氟乙烯)等。

聚氧化乙烯由于其和锂负极的良好兼容性成为有机聚合物固体电解质的主流选择。鉴于聚氧化乙烯本征不含锂,需要首先掺杂前述锂盐;其导锂机理为醚氧键/电负性较高的其他原子对锂离子的诱导,及后续非晶态区域富锂链段运动实现锂离子的近邻转移,最终效果体现为锂离子从聚合物层一侧进入,另一侧脱出,实现锂离子的充放电输运。聚氧化乙烯掺杂锂盐后的结晶度越高其强度越高但锂离子电导越低,所以无机粒子掺杂,聚合物嫁接、共聚、交联改性等降低适度结晶度的手段也为研究者大量采用。至今,聚氧化乙烯固体电解质在稍高温度条件下的锂离子电导已可为实用所接受,且其密度较低、界面阻抗较低,易于薄层化及进行机械加工。

但是,掺杂锂盐后的聚氧化乙烯固体电解质耐高电压能力差,常规电压的三元材料即可使其被氧化,使得正极材料选择受限,很大程度上限制了最终电池的能量密度。另外,聚氧化乙烯强度相对较低,其抗穿刺短路能力相比于其他固体电解质体系较弱。

2、固态锂电池电解质的氧化物体系

氧化物体系的固体电解质主要包含钙钛矿结构的锂钢钛氧化物(LLTO),石榴石结构的锂钢错氧化物(LLZO),快离子导体(LISICON、NASICON)等,导锂机制多为材料在微观层面形成了结构稳定的锂离子输运通道。氧化物固体电解质最大的优势即源于无机氧化物本征属性:机械强度大,理化稳定性较高,耐压能力强,制造复杂度不高。同时,经过部分元素掺杂后,稍高温度条件下(如800C)氧化物固体电解质的锂离子电导也可为实践所接受。

氧化物固体电解质的不足也源于其无机氧化物本征属性:对电极-电解质界面而言,界面接触能力差、循环过程中界面稳定性也差,导致循环过程中界面阻抗提升较快,正负极有效容量发挥不足,电池寿命衰减较快;薄层化也较困难。所以,氧化物固体电解质多需要添加部分聚合物成分并配合微量离子液体/高性能锂盐-电解液,或采用辅助原位聚合等方式制造准固态电池,以保留部分安全性优势并改善电解质-电极的界面接触。

3、固态锂电池电解质的硫化物体系

硫化物体系的固体电解质可认为是由硫化锂及错、磷、硅、钛、铝、锡等元素的硫化物组成的多元复合材料,材料物相同时涵盖晶态和非晶态。硫的离子半径大,使得锂离子传输通道更大;电负性也适宜,所以硫化物固体电解质在所有固体电解质中锂离子电导最好,其中Li-Ge-

P-S体系在室温下的锂离子电导可以和电解液直接相比。另外,硫化物固体电解质的机械强度较大,其对高容量硫正极的兼容性最好。

硫化物固体电解质的主要缺点包括:硫的电负性不及氧,使得搭配高电压正极时电解质层部分贫锂,增大了界面电阻;搭配金属锂负极时生成的SEI 膜阻抗也较大;硫化物为无机非金属颗粒,循环过程中也存在相对严重的电解质-电极界面劣化问题。另外,材料体系对水、氧等非常敏感,一旦发生事故同样易燃;薄层化也困难。这些使得其制造工艺要求非常高。

综上所述,不同固体电解质材料体系性能优缺点各有不同,尚未出现综合性能优异的固体电解质;跨基本类型的材料复合与成分、结构的精确控制也许是取得突破的关键。

声明: 本站部分文章及图片来源于互联网,如有侵权,请联系删除。
友情提示:留下您的需求和联系方式,我们收到信息将第一时间联系您!
姓 名:
邮箱
留 言: